目前,由精确的径向速度(RV)观察结果受到恒星活性引入的虚假RV信号的限制。我们表明,诸如线性回归和神经网络之类的机器学习技术可以有效地从RV观测中删除活动信号(由于星形/张图引起的)。先前的工作着重于使用高斯工艺回归等建模技术仔细地过滤活性信号(例如Haywood等人,2014年)。取而代之的是,我们仅使用对光谱线平均形状的更改进行系统地删除活动信号,也没有有关收集观测值的信息。我们对模拟数据(使用SOAP 2.0软件生成; Dumusque等人,2014年生成)和从Harps-N太阳能望远镜(Dumusque等,2015; Phillips等人2015; 2016; Collier训练)培训了机器学习模型。 Cameron等人2019)。我们发现,这些技术可以从模拟数据(将RV散射从82 cm/s提高到3 cm/s)以及从HARPS-N太阳能望远镜中几乎每天进行的600多种真实观察结果来预测和消除恒星活动(将RV散射从82 cm/s提高到3 cm/s)。 (将RV散射从1.753 m/s提高到1.039 m/s,提高了约1.7倍)。将来,这些或类似的技术可能会从太阳系以外的恒星观察中去除活动信号,并最终有助于检测到阳光状恒星周围可居住的区域质量系外行星。
translated by 谷歌翻译
Since the mid-10s, the era of Deep Learning (DL) has continued to this day, bringing forth new superlatives and innovations each year. Nevertheless, the speed with which these innovations translate into real applications lags behind this fast pace. Safety-critical applications, in particular, underlie strict regulatory and ethical requirements which need to be taken care of and are still active areas of debate. eXplainable AI (XAI) and privacy-preserving machine learning (PPML) are both crucial research fields, aiming at mitigating some of the drawbacks of prevailing data-hungry black-box models in DL. Despite brisk research activity in the respective fields, no attention has yet been paid to their interaction. This work is the first to investigate the impact of private learning techniques on generated explanations for DL-based models. In an extensive experimental analysis covering various image and time series datasets from multiple domains, as well as varying privacy techniques, XAI methods, and model architectures, the effects of private training on generated explanations are studied. The findings suggest non-negligible changes in explanations through the introduction of privacy. Apart from reporting individual effects of PPML on XAI, the paper gives clear recommendations for the choice of techniques in real applications. By unveiling the interdependencies of these pivotal technologies, this work is a first step towards overcoming the remaining hurdles for practically applicable AI in safety-critical domains.
translated by 谷歌翻译
当前的能源转变促进了电力和天然气系统之间的运行融合。在这个方向上,改善协调能力和气体调度内的非凸天然气体流动动力学的建模至关重要。在这项工作中,我们提出了一种神经网络受限的优化方法,其中包括基于监督机器学习的韦茅斯方程的回归模型。 Weymouth方程将气体流动与每个管道的入口和出口压力通过二次平等,该二次相等性,该平等被神经网络捕获。后者是通过可处理的混合插入线性程序编码为约束集的。此外,我们提出的框架能够考虑双向性,而无需求助于复杂且可能不准确的凸化方法。我们通过引入激活函数的重新制定来进一步增强我们的模型,从而提高计算效率。一项基于现实生活中的比利时力量和气体系统的广泛数值研究表明,所提出的方法在准确性和障碍方面产生了有希望的结果。
translated by 谷歌翻译
众所周知,HEBB的学习探索了帕夫洛夫的古典条件,而前者在过去几十年中进行了广泛的建模(例如,通过Hopfield模型和无数的主题变化),因为后者的建模在很大程度上保持了很大的含糊状态。远的;此外,完全缺乏这两个支柱之间的桥梁。实现该目标的主要困难置于所涉及的信息的本质上不同的范围:帕夫洛夫的理论是关于\ emph {concepts}之间的相关性(动态地)存储在突触矩阵中,这是由狗和一个戒指主演的著名实验所体现的钟;相反,HEBB的理论是关于相邻神经元对之间的相关性,如著名的陈述{\ em神经元一起发射汇合的}所总结。在本文中,我们依靠随机过程理论以及通过langevin方程进行神经和突触动力学模型,以证明 - 只要我们保持神经元和突触的时间表的大量分裂,Pavlov机制就会自发地发生并最终产生至恢复Hebbian内核的突触重量。
translated by 谷歌翻译
人们普遍认为,人类视觉系统偏向于识别形状而不是纹理。这一假设导致了越来越多的工作,旨在使深层模型的决策过程与人类视野的基本特性保持一致。人们对形状特征的依赖主要预计会改善协变量转移下这些模型的鲁棒性。在本文中,我们重新审视了形状偏置对皮肤病变图像分类的重要性。我们的分析表明,不同的皮肤病变数据集对单个图像特征表现出不同的偏见。有趣的是,尽管深层提取器倾向于学习对皮肤病变分类的纠缠特征,但仍然可以从该纠缠的表示形式中解码单个特征。这表明这些功能仍在模型的学习嵌入空间中表示,但不用于分类。此外,不同数据集的光谱分析表明,与常见的视觉识别相反,皮肤皮肤病变分类本质上依赖于超出形状偏置的复杂特征组合。自然的结果,在某些情况下,摆脱了形状偏见模型的普遍欲望甚至可以改善皮肤病变分类器。
translated by 谷歌翻译
在灾难后评估领域,为了及时准确的救援和本地化,人们需要知道损坏的建筑物的位置。在深度学习中,一些学者提出了通过遥感图像进行自动且高度准确的建筑损害评估的方法,事实证明,这些方法比域专家评估更有效。但是,由于缺乏大量标记的数据,这些任务可能因能够进行准确的评估而遭受损失,因为深度学习模型的效率高度依赖于标记的数据。尽管现有的半监督和无监督研究在这一领域取得了突破,但它们都没有完全解决这个问题。因此,我们建议采用一种自制的比较学习方法来解决任务,而无需标记数据。我们构建了一个新颖的非对称双网络架构,并在XBD数据集上测试了其性能。我们模型的实验结果表明,与基线和常用方法相比,改善了。我们还展示了自我监督方法建立损害识别意识的潜力。
translated by 谷歌翻译
面部分析模型越来越多地应用于对人们生活产生重大影响的现实应用中。但是,正如文献所表明的那样,自动对面部属性进行分类的模型可能会对受保护的群体表现出算法歧视行为,从而对个人和社会产生负面影响。因此,开发可以减轻面部分类器中意外偏见的技术至关重要。因此,在这项工作中,我们引入了一种新颖的学习方法,该方法将基于人类的主观标签和基于面部特征的数学定义的客观注释结合在一起。具体而言,我们从两个大规模的人类注销数据集中生成了新的客观注释,每个数据集都捕获了分析的面部特征的不同观点。然后,我们提出了一种合奏学习方法,该方法结合了接受不同类型注释的单个模型。我们对注释过程以及数据集分布提供了深入的分析。此外,我们从经验上证明,通过结合标签多样性,我们的方法成功地减轻了意外偏见,同时保持了下游任务的明显准确性。
translated by 谷歌翻译
基准测试对于人工智能(AI)的衡量和转向进步至关重要。但是,最近的研究引起了人们对AI基准测试状态的关注,报告了基准过度拟合,基准测试饱和度以及基准数据集创建的集中化等问题。为了促进监测AI基准测试生态系统的健康状况,我们介绍了创建基准创建和饱和全球动力学的凝结图的方法。我们策划了1688个基准测试的数据,涵盖了计算机视觉和自然语言处理的整个领域,并表明很大一部分基准迅速趋向于近乎饱和,许多基准无法找到广泛的利用,并且基准为不同AI的基准性能增长任务容易出现不可预见的爆发。我们分析与基准流行相关的属性,并得出结论,未来的基准应该强调多功能性,广度和现实世界实用程序。
translated by 谷歌翻译
在神经网络的文献中,Hebbian学习传统上是指Hopfield模型及其概括存储原型的程序(即仅经历过一次形成突触矩阵的确定模式)。但是,机器学习中的“学习”一词是指机器从提供的数据集中提取功能的能力(例如,由这些原型的模糊示例制成),以制作自己的不可用原型的代表。在这里,给定一个示例示例,我们定义了一个有监督的学习协议,通过该协议可以通过该协议来推断原型,并检测到正确的控制参数(包括数据集的大小和质量)以描绘系统性能的相图。我们还证明,对于无结构数据集,配备了该监督学习规则的Hopfield模型等同于受限的Boltzmann机器,这表明了最佳且可解释的培训例程。最后,这种方法被推广到结构化的数据集:我们在分析的数据集中突出显示了一个准剥离组织(让人联想到复制对称性 - 对称性),因此,我们为其(部分)分开,为其(部分)删除层引入了一个附加的“复制性隐藏层”,该证明可以将MNIST分类从75%提高到95%,并提供有关深度体系结构的新观点。
translated by 谷歌翻译
在临床工作流程中成功部署AI的计算机辅助诊断(CAD)系统的一个主要障碍是它们缺乏透明决策。虽然常用可解释的AI方法提供了一些对不透明算法的洞察力,但除了高度训练的专家外,这种解释通常是复杂的,而不是易于理解的。关于皮肤病图像的皮肤病病变恶性的决定的解释需要特别清晰,因为潜在的医疗问题定义本身是模棱两可的。这项工作提出了exaid(可解释的ai用于皮肤科),是生物医学图像分析的新框架,提供了由易于理解的文本解释组成的多模态概念的解释,该概念由可视地图证明预测的视觉映射。 Exap依赖于概念激活向量,将人类概念映射到潜在空间中的任意深度学习模型学习的人,以及概念本地化地图,以突出输入空间中的概念。然后,这种相关概念的识别将用于构建由概念 - 明智地点信息补充的细粒度文本解释,以提供全面和相干的多模态解释。所有信息都在诊断界面中全面呈现,用于临床常规。教育模式为数据和模型探索提供数据集级别解释统计和工具,以帮助医学研究和教育。通过严谨的exaid定量和定性评估,即使在错误的预测情况下,我们展示了CAD辅助情景的多模态解释的效用。我们认为突然将为皮肤科医生提供一种有效的筛查工具,他们都理解和信任。此外,它将是其他生物医学成像领域的类似应用的基础。
translated by 谷歌翻译